Home News MoD/Home Office joint funding supports tests of “life-saving” chemical detection robots and drones

MoD/Home Office joint funding supports tests of “life-saving” chemical detection robots and drones

by Brian Sims

A new fleet of robots and drones designed to test for chemical agents, provide 3D mapping and identify casualties have been put through their paces by troops, police officers and scientists for the first time. Tests of the cutting-edge, multi-million pound project, co-funded by the Ministry of Defence and the Home Office, have included robots that can ‘read’ and climb stairs and miniature drones weighing less than a bar of soap which could soon be put into service to rapidly assess hazardous scenes.

The overriding aim of the “groundbreaking” research, named Project Minerva, is to reduce the risk posed to Emergency Services personnel and front line troops attending incidents or operations involving hazardous chemical or biological materials.

The recent trials, which took place at the Fire Service College in Gloucestershire, saw concept drones and robots thrown into simulated contaminated scenarios in both UK homeland and battlefield environments. The technology was tested against the speed and accuracy of human response teams supported by specialist Defence Science and Technology Laboratory (DSTL) scientists at Porton Down, the military, the police and Fire and Rescue Services.

Defence Secretary Gavin Williamson said: “Following the reckless nerve agent attack in Salisbury this year, we have seen the bravery and professionalism of our Armed Forces, the Emergency Services and MoD scientists. They have worked tirelessly to investigate and clean up deadly contaminated areas. This project will ensure we stay at the forefront of dealing with such heinous attacks, whether perpetrated on our streets or on foreign battlefields. We’re investing millions in this pioneering technology to do more to protect those who so fearlessly protect us.”

Ben Wallace, the Minister of State for Security and Economic Crime, explained: “I’m excited to see the UK being on the front foot and leading in the development of these autonomous technologies which are secure, reliable and useful for dangerous sites. The potential to protect our responders and members of the public from potentially hazardous scenes is considerable. The UK’s experience and pedigree in security means that we are in prime position to identify what’s best placed to tackle the threats of the future.”

Background to Project Minerva

Project Minerva was launched in September 2016 and has been supported by over £3 million in joint funding over 24 months. The project intends to bring the designs from concept to reality in an accelerated time frame. The recent trials involved the winning concepts for Phase 2 of the project.

The project is led by the DSTL, funded jointly by the MoD’s science and technology portfolio and the Home Office and contracted through the Defence and Security Accelerator (DASA) with funding from Defence Science and Technology (DST).

Peter Stockel, DSTL’s autonomy lead, said: “These two weeks of trials see the culmination of over 18 months of work to realise an exciting vision, which could see robots and humans working together in demanding situations and potentially saving lives when dealing with incidents involving hazardous substances. In this ‘technology exploration’, we’ve been working with industry and academia to rapidly advance robotic and autonomous solutions in order to enhance our response options and tools for the near future. With continued involvement across Government, and demonstration with the user community, we aim to mature this emergent capability to test the ‘art of the possible’ and accelerate this into the hands of the prospective users for further operational evaluation, both for the MoD and the Home Office.”

Major John Green, military advisor in the CBR Division for DSTL, added: “The military is putting a lot of time and effort into CBRN. Project Minerva could have a significant effect on our capability and potentially decrease the training burden. It’s a project for everything else to build on.”

Back in March, Gavin Williamson also announced measures to maintain the UK’s world-leading chemical analysis and capability when he outlined £48 million of investment in a new Chemical Weapons Defence Centre at DSTL.

Phase 1 and Phase 2 detail

Phase 1 of Project Minerva, which ran for six months until July 2017, funded 18 development projects and was worth £1.37 million.

Four teams were then selected to develop their concepts further in this second phase. Just over £1.6 million total funding was awarded to the following Phase 2 winners, all of which are SMEs and academic institutions:

*BMT Defence Services (with Rescue Global, Herriot Watt and Edinburgh Universities) with Red Alert: unmanned aerial vehicles which have gas-sensing technology and 2D and 3D mapping and modelling, all mounted on commercially-available drones to allow upgrades as drone technology evolves

*Horiba MIRA with a small purpose-designed ground robot which can deploy on decontamination missions, climb stairs and ‘read’ or recognise hazardous chemical signs and symbols, thereby exploiting cutting-edge neural network technology

*Loughborough University (with Swarm Systems and Createc) with SceneSEARCH, a pocket-sized nano-drone weighing in at less than 250 g which has gas sensors and video and thermal imaging capability

*Snake Eyes by Autonomous Devices Limited and Pendar: a unique hybrid air and ground vehicle optimised for confined spaces which can relay 3D images of a space and detect chemical agents using a compact laser system

You may also like

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More